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Table 3. Examples of equivalent superspace groups 

The first column indicates some space groups as they are listed in 
Table 2 of I. The remaining columns are the equivalent groups 
obtained from those in the first column by employing the wave 
vector shown in the heading. 

q=vc* q=(7-1)c*  q= (~,-2)c* 

p P4!  22 ID P4122 D P 4 1 2 2  
t i i  -- q i i  -- s~i 

F d d 2  D l ~ d d 2  D F d d 2  
1 1 1  ~ q q l  z $ s l  

p 141/ a p 1 4 1 /  a D I  41/ a 
t T -- q T -- s T 

q= ('y-3)c* 

pP61 

1, s, t, q or h is written in the bottom line. For 
superspace groups with non-zero q,, which are 
denoted by A, B, C, L, M, N, U, V, W and R in the 
prefix of the symbol, several values of r are possible. 
For example, we consider A Pmmm 111, which has q r=  
a*/2. By the convention in I, the first ('~) represents 
a (hyper-) mirror plane perpendicular to the a axis 
with z = 0. On the other hand, the same group also 
has a mirror plane parallel to this but a distance a/2 
apart because of the lattice translation a. The value 
of r corresponding to the latter is then ½. Hence the 
symbol for this plane is (~). Thus A Pmmm sl i represents 

APmra-ra T h i s  is analogous to the the same group as ,1 1 1 1 • 
situation in three dimensions, where, for example, 
Ammm could also be written as Ancb. However, 
conventions such as those that give preference to 
Ammm have not yet been formulated for superspace 
groups. Notice that, just as in the three-dimensional 
case, the non-uniqueness of the symbol does not play 
a role in the reflection conditions and is of no practical 
consequence. 

4. Equivalent superspace groups 

The q dependence of the superspace group symbol 
is related to the equivalence of superspace groups. 

D P m c n  For example, consider - s sT with q = 7e*, which is 
the superspace group appearing in the incommen- 
surate phase of K2SeO4 (Janner & Janssen, 1980). 
For the choice q =  ( y - 1 ) c * ,  the superspace group 

D P m c n  becomes - s 1~ because 8 is invariant and q, is - c*  
in this case. Thus a different choice of q may lead to 
a different superspace group. This is however always 
equivalent to the original one (Janner & Janssen, 
1979). For the sake of the practical problem encoun- 
tered in the determination of the superspace group, 
several examples of equivalent superspace groups are 
shown in Table 3. 

In addition, there are many equivalent superspace 
groups that are related to the choice of the basic 

D P  men vectors a, b, c. Consider again - s  sT. This is 
D P n a m .  equivalent to - T~s • the latter is obtained from the 

former by exchanging the a and c axes. Such a kind 
of equivalence relation is similar to that in the usual 
space groups. 

One of the authors (AY) is indebted to the Faculty 
of Science, University of Nijmegen, for financial 
support. 
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Abstract 

The determination of the full space symmetry of two 
interpenetrating lattices in a coincidence-site lattice 
orientation is discussed. The considered coincidence- 
site lattices are formed by two primitive cubic, face- 
centred cubic or body-centred cubic lattices. The two 
interpenetrating lattices form a dichromatic pattern 
and its symmetry is investigated by combining the 
three-dimensional periodicity of the coincidence-site 
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lattice with the point-symmetry operations of the 
motif characterizing the particular dichromatic pat- 
tem. This provides a very concise formulation for 
treating this subject, especially if antisymmetry (two- 
coloured symmetry) is used. The translational sym- 
metry of coincidence-site lattices with 2 < 5 0  is 
specified by determining the finest common sublattice 
of the two interpenetrating lattices. The point sym- 
metry is determined by using the principle of the 
symmetry of composites and it is shown that the 
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permissible point groups of dichromatic patterns in 
the cubic system are 4/mm'm', 6'/m'mm', 3rn', 
mm'm', 2'/m', 1. 

1. Introduction 

The coincidence-site lattice is the most commonly 
used model for describing the geometry of grain boun- 
daries. Working with this model we consider two 
interpenetrating lattices so that they have at least one 
point in common, which is called a coincidence site, 
and choose that point as origin. Depending on the 
metric properties of the lattices and on their relative 
orientation, more coincidence sites may exist and 
these extra sites may exhibit one-, two- or three- 
dimensional periodicity. In the last case we speak of 
a coincidence-site lattice (CS lattice or CSL). 

In recent papers (Pond & Bollmann, 1979; Pond 
& Vlachavas, 1983) the symmetry of CS lattices has 
been discussed by introducing the concept of the 
dichromatic pattern. This is the pattern created by 
two interpenetrating lattices forming the CSL, one of 
the lattices is regarded as white and the other as black. 
The symmetry of the dichromatic pattern is then 
described in terms of two-coloured symmetry (or 
antisymmetry) elements (Shubnikov & Koptsik, 
1977). In this respect, the black and white lattices 
are invariant with respect to ordinary symmetry 
operations, but they are mutually transformed (i.e. 
black to white and vice versa) by the colour-reversing 
symmetry operations. 

The dichromatic pattern describes the spatial distri- 
bution of the points of the black and white lattices 
as well as the geometrical interrelations existing 
between these points. Thus, it exhibits two distinct 
features: the recurring motif, which indicates some 
grouping of white and black lattice points, and the 
way this motif is repeated throughout the space (Pond 
& Vlachavas, 1983). The spatial repetition of the motif 
is conveniently specified by means of the CS lattice, 
which is, by definition, the finest common sublattice 
of the black and white lattices. The CS lattice is a 
mathematical construction, which is introduced and 
studied quite independently of the motif structure of 
a dichromatic pattern. Accordingly, the determina- 
tion of the space symmetry of a dichromatic pattern 
can be accomplished in stages by (a) finding the 
translation group of the CS lattice, (b) establishing 
the point symmetry consistent with the motif that 
characterizes the particular dichromatic pattern, and 
(c) combining the translational and point symmetries. 

This paper will specifically be devoted to the deter- 
mination of the symmetry groups of three- 
dimensional periodic dichromatic patterns (CSL 
dichromatic patterns) formed by two metrically iden- 
tical cubic lattices. For this, the relative orientation 
(misorientation) of the two lattices is restricted to 
those values only that correspond to a CSL orienta- 

tion. The misorientation is described by a rotation 
angle 0 along an axis [uvw], where [uvw] is expressed 
in the coordinate system of the white lattice, which 
is kept fixed in space. This coordinate system is 
orthogonal right-handed having its origin on a coin- 
cidence site, its axes parallel to the edges Of a standard 
cubic unit cell of the white lattice and we choose the 
length of an edge as the length unit. 

2. Coincidence-site lattice misorientations 

Axis/angle pairs, [uvw]/O, describing rotations that 
bring the white and the black lattices in partial coin- 
cidence (CSL misorientations) have been reported in 
many papers (Ranganathan, 1966; Warrington & 
Bufalini, 1971; Bruggeman, Bishop & Hartt, 1972; 
Fortes, 1972; Grimmer, 1973; Grimmer, Bollmann & 
Warrington, 1974; Bleris, Antonopoulos, Karakostas 
& Delavignette, 1981). Any CSL misorientation is 
characterized, except for the parameters [uvw] and 
0, by an integral number, X, which is the ratio of 
volumes of the primitive unit cells of the CSL and 
the white (or black) lattice and is unique for each CS 
lattice. Grimmer (1974) has shown that a CS lattice 
corresponding to a given value of Z can be, in general, 
expressed by more than one symmetry-equivalent 
orientation relationship. 

In the case of cubic lattices there are 24 equivalent 
descriptions of a CSL misorientation and one of them 
is chosen as representative of the particular CS lattice. 
However, this selection is not completely arbitrary. 
Usually, we use as standard description that one 
corresponding to the smallest positive value of the 
rotation angle consistent with the considered CSL 
(smallest-angle description). Alternatively, as pointed 
out by Fortes (1972), most of the CSL misorientations 
can be expressed in terms of a 180 ° rotation (180 ° 
angle description). In some instances, however, it is 
important to know whether or not a given CSL mis- 
orientation can be described in terms of a rotation 
about a symmetry axis of the white lattice. For this 
purpose, we use in the present work a third descrip- 
tion of the CSL misorientations. It is completely 
equivalent to the previous descriptions and is intro- 
duced only for those CSL misorientations for which 
the smallest-angle description does not correspond 
to a rotation about the [100], [110] and [111] direc- 
tions of the white lattice. The new description specifies 
a CSL misorientation by the axis/angle pair corre- 
sponding to the minimum value u2+ v2+ w 2 of the 
rotation axes [uvw] consistent with the particular CSL 
(low-index description). If more than one axis/angle 
pair fulfils the above criterion then the axis/angle 
pair with the smaller rotation angle is taken as the 
low-index description. The smallest-angle descrip- 
tions of CSL rotations about [100], [110] or [111] 
and their corresponding low-index descriptions are 
taken to be identical. 
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Table 1 lists the three alternative descriptions of 
CSL misorientations in the cubic system with E < 50. 
The tabulated rotation axes lie within the standard 
stereographic triangle [ 100]-[ 110]- [ 111 ]. The 
different 2 corresponding to the same multiplicity 
(same E value) are classified alphabetically starting 
with the description having the smallest rotation 
angle. As can be seen, only the E = 39b CSL mis- 
orientation cannot be reduced to a 180 ° rotation 
relationship (Fortes, 1972). 

3. Symmetry operations of CSL dichromatic patterns 
11 

The purpose of this section is to analyse the principles 13a 
for the determination of the three-dimensional 13b 15 
periodicity of a CS lattice and the point symmetry 17a 
consistent with the motif of the corresponding dichro- 17b 

19a 
matic pattern. We designate the antisymmetry space 19b 
group of the CSL dichromatic pattern by ~ ( p ) ;  it 21a 
can be expressed in matrix operator terms as (Pond 21b 23 
& Vlachavas, 1983) 25~ 

25b 

~ ( p ) =  { [D(o)i  "t,] u [D( c),l.~,]} 27~ 
27b 

o{T(p)( [D(o  ) i  0 ]  k,) [ D (  C)i 0 ] ) } ,  29a 
29b 
31a 

where T(p) = {[E ~'i]} and E is the matrix representing 31b 
the (ordinary) identity symmetry operation. T(p) is 33a 
the group of (ordinary) translation vectors of the CS 33b 

33c 
lattice. D(o)i and D(c)i are the matrix representations 35a 
of the ordinary and colour-reversing point-symmetry 35b 
operations, respectively. 37a 

37b 
This expression indicates that the antisymmetry 37c 

space group of a CSL dichromatic pattern is always 39a 
39b 

symmorphic and, consequently, ~ ( p )  is determined 41a 
by combining directly the translations in the group 41b 
T(p) with all point-symmetry operations of the types 41c 

43a 
O ( o ) i  and O ( c ) i .  43b 

The three-dimensional translational symmetry of a 43c 
45a CS lattice is investigated by considering the 45b 

geometrical relationship between the black and the 45c 
white lattices. Denoting by T(/z)={[l::[a-(/x)i]} and 47a 

47b 
T(A) = {[E "r(h)~]} the translation groups of the black 49a 
and white lattices, respectively, we have that the group 49b 
T(p) is given by the intersection T(p) = T(A)~ T(/z). 49c 
Consequently, the group T(p) is equivalent to the set 
of white lattice vectors that satisfy the relation (Pond 
& Vlachavas, 1983) 

'r(h)~ = Rx(h),, (1) 

where R is the coordinate transformation describing 
the rotation of the black lattice relative to the white 
(Warrington & Bufalini, 1971). 

The determination of the point group of a dichro- 
matic pattern is based on the principle of composite 
symmetry and, accordingly, the point-symmetry 
operations can be directly found by superposing the 
black and white point groups so that they have com- 
mon origin (Vlachavas, 1984). 

Table 1. The CSL misorientations in the cubic system 
with 2 < 50 are expressed by their smallest-angle, 180 ° 

angle and low-index descriptions 

T h e  r o t a t i o n  axes  [uvw] are  t a k e n  in the  s t a n d a r d  s t e r e o g r a p h i c  

t r i ang le  (u>_v>_w>_O). F o r  the  sake  o f  s impl i c i ty ,  t he  s q u a r e  

b racke t s  in t he  s y m b o l s  o f  r o t a t i o n  axes  h a v e  b e e n  o m i t t e d .  

Sma l l e s t -  180 ° Low-  

a n g l e  ang l e  i n d e x  

d e s c r i p t i o n  d e s c r i p t i o n  d e s c r i p t i o n  

111/60 ° 111 211 
100/36-87 ° 210 310 
111/38"21 ° 321 
110/38.94 ° 221 411 
110/50"48 ° 311 332 
100/22"62 ° 320 510 
111/27"80 ° 431 
210/48"19 ° 521 
100/28"07 ° 410 530 
221/61"93 ° 322 433 110/86.63 ° 
110/26"53 ° 331 611 
111/46"83 ° 532 
111/21"79 ° 541 
211/44"42 ° 421 210/58.41 ° 
311/40"46 ° 631 210/163.04 ° 
100/16.26 ° 430 710 
331/51"68 ° 543 211/156.93 ° 
110/31"59 ° 511 552 
210/35"43 ° 721 
100/43"60 ° 520 730 
221/46"40 ° 432 210/112.29 ° 
111/17"90 ° 651 
211/52"20 ° 732 
110/20"05 ° 441 811 
311/33"56 ° 741 211/117.04 ° 
110/58"99 ° 522 554 
211/34"05 ° 531 
331/43"23 ° 653 210/106.60 ° 
100/18"92 ° 610 750 
310/43"14 ° 831 221/161.08 ° 
111/50"57 ° 743 
111/32"20 ° 752 
321/50.13 ° 
100/12"65 ° 540 910 
210/40"88 ° 621 
110/55"88 ° 443 833 
111/15"18 ° 761 
210/27"91 ° 921 
332/60"77 ° 533 655 110/80.63 ° 
311/28"62 ° 851 221/126.87 ° 
221/36"87 ° 542 210/83-62 ° 
221/53"13 ° 754 
331/37"07 ° 763 210/87-56 ° 
320/43"66 ° 932 310/156.19 ° 
111/43"57 ° 853 
511/43"57 ° 941 211/88.83 ° 
322/49"23 ° 632 210/146.80 ° 

4. Point groups for CSL rotations in the cubic lattices 

In the case of CSL dichromatic patterns the rotation 
matrix R corresponds to known misorientation 
relationships (Table 1) and, consequently, the deter- 
mination of the point-symmetry operations can be 
formulated in a concise algorithm (Vlachavas, 1984). 
We denote by D~ and D~ the point groups of the 
white and black lattices, respectively, and by D(h)i, 
i -- 1, 2 , . . . ,  r•, the operations of DA, where r~ is the 
order of D~. For the dichromatic patterns considered 
in the present work we have D~ - D~, = m3m. The set 
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Do of the ordinary operations D(o)~ of the dichro- 
matic pattern is obtained by forming the products* 
R-1D(A)iR, i =  1 , 2 , . . . ,  rx, and taking only those 
symmetry operations of the white point group for 
which R-1D(A)iR ~Dx; thus, Do is an order r sub- 
group of Dx. Next, we examine the form of the rota- 
tion R. If R 2 ~ Do, the point group of the CSL dichro- 
matic pattern is given by D =Do+DoR.  Otherwise, 
we take all the factor 2 supergroups of Do that are 
subgroups of D x and we denote them by D2,~ = { D (0)1, 
D(o)2 , . . . ,  D(o),, D'(A),, D ' (A)2, . . . ,  D'(A)r}. For 
each D2.i we form the products D'(A)~RD'(A)~R, i =  
1, 2 , . . . ,  r. If  D'(A)iRD'(A)~B ~ Do, then the dichro- 
matic point group is D = Do + {D'(A)IR, 
D' (A)2R, . . . ,  D'(A),R}, whereas if D'(A),RD'(A),R 
Do for all D'(A)~ ~ {D2,~-Do} and all subgroups DE,/, 
the dichromatic point group is Do. 

Before applying this algorithm, it is of interest to 
notice that the rotation matrix R, expressed in the 
coordinate system of the white lattice, represents an 
orthogonal transformation and, hence, R -1ER = E and 
R - l i R -  i, where i is the matrix representing the inver- 
sion symmetry operation. An immediate consequence 
is that Do corresponds always to a centrosymmetric 
point group and, therefore, Do can only be one of 
the following subgroups ofDx = m3m: 1, 2/m, mmm, 
4/m, 4/mmm, 3, 3m, m3, m3m. 

Also, we note that the algorithm simplifies con- 
siderably when the transformation R E is equivalent 
to a symmetry operation of the white point group. 
For the CSL rotations in Table 1, with the exception 
of E = 39b, the point group of the associated dichro- 
matic pattern is expressed as D = Do +Do2 v, where 
21' is the twofold colour-reversing operation 
equivalent to the 180 ° description of the CSL rotation. 
For determining the point group D we consider four 
distinct categories of 180 ° CSL rotations. 

The first category contains the 180 ° rotations along 
[uv0]. The symmetry elements of the white point 
group that are invariant with respect to these rotations 
form the point group Do = 4/m. This can be easily 
seen by noting that relation D(A)~ = R-1D(A)jR only 
holds for those symmetry elements that are either 
parallel or perpendicular to the rotation axis.~ Thus, 
the point groups of the dichromatic patterns for the 
[uvO]/180 ° rotations are isomorphic to D =  

r ={4/m}+{4/m}2~',,o=4/mm'm' [for the Do+Do2,oo 
notation of symmetry operations see Vlachavas 
(1984)]. 

The second category comprises the 180 ° rotations 
along a direction of the general form [v+w,  v, w]; 

* We note that Vlachavas (1984) has considered R as the vector 
transformation relating the black and the white lattices. In the 
present paper R is taken as a coordinate transformation. 

t This does not hold, of course, for the ordinary symmetry 
elements of identity and inversion, which are not associated with 
a specific direction in the point group. As was explained above 
these elements are invariant for any CSL misorientation. 

they are alternatively described as [111]/0 (Table 1). 
All these misorientations, except the ,Y = 3 
[111]/60°-= [111] /180°-  [211]/180° (see below), lead 
to CSL dichromatic patterns in which the ordinary 
symmetry operations form the Do =3  group. Con- 
sequently, these patterns possess point symmetry 

= {3} + {3}2 o+w.v,w = 3 with v > expressed by D - - r m' 
w>0 .  

In the third category we have rotations of 180 ° 
along a direction of the general form [uuw] or [uvv]. 
For these we have D={2/m}+{2/m}2~',,w= 
{2/m}+{2/m}2~',~=mm'm'. The remaining 180 ° 
rotations belong in the fourth category and they yield 
dichromatic patterns with Do = 1 and, thus, the point 
group D is expressed by D {i} - 1, = +{1}2uw = 2 ' /m' .  

The Z = 3 misorientation represents a special case 
as far as the symmetry of the dichromatic pattern is 
coacerned. In fact, it is the only CSL rotation in the 
cubic system giving dichromatic patterns with point 
symmetry non-isomorphic to a subgroup of the group 
Da - D ~  = m3m. The lowest-angle description of the 
,Y = 3 rotation is [111]/60 ° and it corresponds to the 
symmetry operation 6~'11. The combination of 6~1 
with the threefold ordinary symmetry axis parallel to 
[111] yields a sixfold colour-reversing axis 
(Vlachavas, 1984). In group-theoretical terms, we 
note that for the [111]/60 ° rotation the_group of the 
ordinary operations is Do = 3m, with 3 parailel to 
[ 111 ] and, accordingly, D is obtained by the extension 
D = {3m} + {3m}6 ~'11 = 6'/m'mm'. 

Completing the determination of the point groups 
for the CSL dichromatic patterns we consider now 
the ,S=39b  [321]/50.13 ° rotation; it cannot be 
reduced to a 180 ° rotation. The ,~ = 39b dichromatic 
pattern contains two ordinary symmetry operations, 
the (trivial) operations of identity and inversion. In 
order to check the presence of colour-reversing 
operations we take D2,1 = {1, i, 1 21o0, Slo0} and we note 
that none of the operations 2]oo and Sloo satisfy the 
condition D'(A) RD'(A)R ~ Do. The same holds for 
the subgroups D2.2 {1, i, 1 = 201o, S01o} and D2,3- 
{1, i, 1 2ool, Sool}. The point group of the 2 = 39b dichro- 
matic pattern has, therefore, no colour-reversing 
operations and, hence, D = 1. 

5. Determination of the periodicity of CS lattices 

The three-dimensional translation symmetry of a CS 
lattice can be computed analytically by using (1). 
However, in the present study an alternative method 
was used allowing the calculation of three non- 
coplanar translation vectors ti ~ T(p) (i = 1, 2, 3) 
such that each vector in T(p) can be written as a 
linear combination with integral coefficients of ti. The 
vectors ti (i = 1, 2, 3) form a basis for the group T(p) 
and they are expressed in the coordinate system of 
the white lattice by ti = XliUl}-x2iu24rx3iu3, where ui 
(i = 1, 2, 3) are the basis vectors of the white coordi- 
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nate system. Thus, the axial representation of the 
basis of a CS lattice is described by the 3 x 3 matrix 

Xll  X12 XI3 

B --- x21 x22 x23 ~ [tl, t2, t3], 
• '3C31 "3¢32 X33 

which is called a basis matrix. We have chosen to 
describe the translational symmetry of CS lattices by 
the (reduced) Niggli unit cell (Niggli, 1928; Inter- 
national Tables for Crystallography, 1983). 

The calculation of the basis matrices specifying the 
Niggli cells of the CS lattices considered in this paper 
was carded out by a two-stage algorithm. In the first 
stage we applied the elementary number-theoretical 
method of Grimmer, Bollmann & Wardngton (1974) 
for calculating the axial representation of an 
arbitrarily chosen primitive unit cell of a CSL. The 
corresponding basis matrices for CS lattices in primi- 
tive, body-centred and face-centred cubic lattices are 
denoted by Bp, Bb and Bj~ respectively. 

The column vectors of matrices Bp, Bb and By thus 
obtained define arbitrary primitive unit cells, which 
may not be the most cube-like cells, and their vectors 
may not acquire the shortest length. In the second 
stage of the algorithm, we convert the unit cell 
described by Bp, Bb or By into the Niggli cell by 
applying the procedure given by Kfiv~ & Gruber 
(1976). Also, for each step of the procedure we gener- 
ate a 3 x 3 transformation matrix describing the new 
axial vectors in terms of the old ones so that the 
overall transformation matrix M and the final basis 
matrices MBp, MBb or MBf can be printed out when 
the reduction procedure is complete. 

6. Bravais lattices of CSL's 

The basis matrices expressing the Niggli unit cells of 
the CS lattices, obtained by the misorientations listed 
in Table 1, were calculated by applying the algorithm 
of the previous section. In these computations the 
low-index descriptions of the CSL misorientations 
were used because, as will be discussed in the follow- 
ing, these axis/angle pairs are the most suitable for 
classifying the symmetry of CSL dichromatic pat- 
terns. Tables 2, 3 and 4 list the basis matrices for the 
CS lattices in primitive cubic (p.c.), face-centred cubic 
(f.c.c.) and body-centred cubic (b.c.c.) lattices, 
respectively. The first two columns in these tables 
give, for each CSL misorientation, the ,~ value and 
the basis matrix [t~, t2, t3] of the Niggli unit cell of 
the corresponding CS lattice. 

The significance in describing the CSL translational 
periodicity by the Niggli unit cell is not only in its 
uniqueness, but also in the possibility that it can be 
used for determining the Bravais type of the CS 
lattices (Az~iroff & Buerger, 1958; International Tables 
.['or Crystallography, 1983). This allows us to establish 

the metric symmetry of the CS lattices and to calculate 
the basis matrices ['r~, "r2, "r3] of the conventional unit 
cells from the primitive triples [t~, t2, t3]. The basis 
matrices ['rl, "rE, "r3] and their Bravais types are tabu- 
lated in the last two columns of Tables 2, 3 and 4. 
The Bravais types are given according to the list: 

hP: primitive hexagonal 
tP: primitive tetragonal 
tI: body-centred tetragonal 

hR: rhombohedral hexagonal 
oP: primitive orthorhombic 
oC: side-centred orthorhombic 
oi: body-centred orthorhombic 
oF: face-centred orthorhombic 

mP: primitive monoclinic 
mC: side-centred monoclinic. 

The axial representations of the conventional cells 
are expressed according to the following conventions. 
In the case of rhombohedral cells, the matrices 
["r~, "r2, "r3] are referred to the hexagonal axes. For unit 
cells in the tetragonal, hexagonal and trigonal systems 
the relations between the cell dimensions are I"r~l = 
I"r21 ~ I"r31. In the orthorhombic system the axes of 
primitive, body-centred and face-centred cells obey 
the condition I"r,I < I"r21 < I"r31. The side-centred ortho- 
rhombic lattice is taken C-centred. In the monoclinic 
system "r2 is taken as the unique axis and "rl, "r3 are 
chosen coincident with the shortest two translations 
perpendicular to "r2; the angle between "r~ and "r3 is 
taken non acute. The side-centred monoclinic lattice 
is taken as C-centred. 

It should be emphasized that the symmetry deter- 
mined by means of the Niggli unit cell is the metric 
symmetry of the CS lattice and it may be the same 
as or higher than the true symmetry of the CSL 
dichromatic pattern. This situation is demonstrated 
by the following examples. Firstly, consider the CSL 
dichromatic pattern obtained by the misorientation 

= 21a [ 111 ]/21.79°; its Bravais lattice is hexagonal 
and, accordingly, this pattern may contain either a 
sixfold (high symmetry) or a threefold (low sym- 
metry) rotational axis. However, the high-symmetry 
case is not consistent with the particular CSL mis- 
orientation relationship that is associated with the 
dichromatic point group 3m' (§ 4). This becomes 
apparent by the following considerations. Since the 
white and black lattices do not contain a sixfold 
(ordinary) axis, the high-symmetry case should corre- 
spond to sixfold colour-reversing rotational sym- 
metry. But the rotation axis is parallel to the direction 
[111] of the white (and black) lattice, that is, coin- 
cident with a threefold ordinary axis and, con- 
sequently, in order to have sixfold colour-reversing 
rotational symmetry, the rotation angle should be 
equal to 60 ° (Vlachavas, 1984; see also § 4). This is 
not the case for the considered example; none of the 
24 symmetry-equivalent descriptions of the 2 =21a  
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Table 2. Basis matrices of the reduced, It1, t2, t3], and 
the conventional, [~1, ~2, w3], unit cells of CS lattices 

(2  < 50) formed by two primitive cubic lattices 

S y m m e t r y  

-~ [ t t ,  t2, t3] [¢1, ¢2, ¢3] o f  C S L  

3 1 0 1 1 0 1 hP 
- 1  1 1 - 1  1 1 

0 - 1  1 0 - 1  1 
5 1 0 0 0 0 1 tP 

0 1 - 2  1 - 2  0 
0 2 1 2 1 0 

7 1 0 - 2  - 1 - 2  1 hR 
1 1 0 3 - 1  1 
1 - 2  1 - 2  3 I 

9 1 0 2 1 2 - 1  oC 
1 - 1  - 2  1 - 2  1 
0 2 - 1  0 - 1  - 4  

11 1 - 2  1 1 1 3 oC 
1 1 - 1  1 - 1  - 3  
0 1 3 0 3 - 2  

13a 1 0 0 0 0 1 tP 
0 2 - 3  2 - 3  0 
0 3 2 3 2 0 

13b 1 - 2  - 1  - 1  - 3  1 hR 
1 2 - 2  4 - 1  I 
1 - 1  2 - 3  4 1 

15 2 - 1  1 - 1  - 1  2 oC 
1 2 - 2  2 2 1 
0 1 2 - 5  1 0 

17a 1 0 0 0 0 1 tP 
0 4 1 4 - 1  0 
0 1 - 4  1 4 0 

17b 1 - 2  2 1 2 3 oC 
1 1 - 2  1 - 2  - 3  
0 2 3 0 3 - 4  

19a 1 0 3 1 3 - 1  oC 
1 - 1  - 3  1 - 3  1 
0 3 - 1  0 - 1  - 6  

19b 1 - 3  2 - 5  2 1 hR 
1 0 - 3  3 - 5  1 
1 2 0 2 3 1 

21a 1 - 1  3 - 1  3 1 hP 
1 - 2  - 1  - 2  - 1  1 
1 3 - 2  3 - 2  1 

21b 2 0 - 1  - 2  1 2 oC 
1 - 2  2 1 - 2  3 
0 - 1  - 4  1 4 1 

23 2 2 1 - 1  3 2 mC 
1 - 3  0 0 - 6  1 
0 - 1  - 3  3 1 0 

25a 1 0 0 0 0 1 tP 
0 3 - 4  3 - 4  0 
0 4 3 4 3 0 

25b 2 1 - 1  2 - 1  4 mC 
1 2 3 1 - 2  - 5  
1 - 2  2 1 2 - 3  

27a 1 - 1  - 3  1 5 - 1  oC 
1 1 2 1 - 5  1 
0 - 5  1 0 - 2  - 5  

27b 2 1 - 2  - 3  - 1  1 m C  
1 - 3  2 2 2 - 3  
0 - 1  - 3  1 - 7  - 1  

29a 1 0 0 0 0 1 tP 
0 5 - 2  5 - 2  0 
0 2 5 2 5 0 

29b 2 - 1  2 2 - 1  2 mP 
1 1 - 4  1 1 - 4  
0 2 3 0 2 3 

31a 1 1 - 4  - 1  - 5  1 hR 
1 2 1 6 - 1  1 
1 - 4  2 - 5  6 1 

31b 2 0 - 1  2 2 1 mC 
1 4 1 1 - 7  - I  
1 - 1  3 1 3 - 3  

33a 1 0 4 1 4 - 1  oC 
1 - 1  - 4  1 - 4  1 
0 4 - 1  0 - 1  - 8  

Table 2 (cont.) 

Symmetry 
.S [ t l ,  t2, t3] [ ' r l ,  ~2, x3] o f  C S L  

33b 2 1 1 2 1 - 4  oC 
1 - 4  1 1 1 7 
1 - 1  - 3  1 - 3  1 

33c 1 - 2  - 3  1 5 - 2  oC 
1 2 2 1 - 5  2 
0 - 5  2 0 - 4  - 5  

35a 2 1 1 - 3  1 - 1  oC 
1 - 5  - 1  0 2 5 
1 .3 - 2  1 3 - 3  

35b 2 1 - 2  - 1  - 3  - 2  oC 
1 - 2  4 2 6 - 1  
0 - 3  - 1  3 - 5  0 

37a 1 0 0 0 0 1 tP 
0 6 1 6 - 1  0 
0 1 - 6  1 6 0 

37b 2 - 1  - 2  - 3  1 2 m C  
2 3 1 - 1  - 3  2 
1 0 4 8 0 1 

37c 1 - 4  3 - 7  3 1 hR 
1 0 - 4  4 - 7  1 
1 3 0 3 4 1 

39a 1 3 1 3 1 1 hP 
1 - 4  3 - 4  3 1 
1 1 - 4  1 - 4  1 

39b 0 3 - 2  - 5  - 1  0 m C  
0 2 3 1 - 5  0 
3 1 1 0 - 2  3 

41a 1 0 0 0 0 1 tP 
0 4 - 5  4 - 5  0 
0 5 4 5 4 0 

41b 2 - 2  1 2 - 2  1 mP 
1 2 - 2  1 2 - 2  
0 1 6 0 1 6 

41c 1 - 4  1 1 - 3  - 4  oC 
1 4 - 2  1 3 4 
0 3 4 0 - 8  3 

43a 1 4 - 3  6 - 7  1 hR 
1 - 2  4 1 6 1 
1 - 3  - 2  - 7  1 1 

43b 2 - 1  0 1 1 2 m C  
1 4 1 - 2  - 4  1 
0 1 5 9 - 1  0 

43 c 1 - 3  - 3  1 5 - 3  oC 
1 3 2 1 - 5  3 
0 - 5  3 0 - 6  - 5  

45a 2 - 4  1 3 5 - 1  m C  
2 1 - 3  - 1  - 1  3 
1 3 1 2 - 8  - 1  

45b 2 - 2  - 1  2 - 2  - 1  oP 
1 4 2 1 4 2 
0 - 5  2 0 - 5  2 

45c 2 - 1  - 4  1 - 7  1 mC 
2 1 1 3 5 - 1  
1 - 3  3 - 2  4 3 

47a 2 1 - 3  - 3  - 3  1 mC 
1 - 3  4 2 6 - 3  
0 - 3  - 2  3 - 7  - 3  

47b 3 0 1 3 3 - 1  m C  
1 5 1 1 - 9  - 1  
0 - 1  3 0 2 - 3  

49a 1 - 1  4 - 5  8 1 hR 
1 - 4  - 1  - 3  - 5  1 
1 4 - 4  8 - 3  1 

49b 2 - 1  - 1  2 4 1 m C  
1 5 0 1 - 9  0 
1 0 4 1 1 - 4  

49c 2 0 - 3  2 0 - 3  m P  
1 - 1  6 1 - 1  6 
0 - 3  - 2  0 - 3  - 2  
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Table 3. Basis matrices of  the reduced, [t~, t2, t3], and 
the conventional, [x~, x2, x3], unit cells of CS lattices 

( •<50)  formed by two face-centred cubic lattices 

[tl ,  t2, t3] [~1,~2, T3] 
3 -1 /2  0 1 -1 /2  0 1 

1/2 -1 /2  1 1/2 -1 /2  1 
0 1/2 1 0 1/2 1 

5 1 1/2 1/2 0 0 1 
0 1/2 -1 3/2 -1 /2  0 
0 1 1/2 1/2 3/2 0 

7 -1 /2  -1 1/2 1/2 1 1 
- I  1/2 -1 /2  -3 /2  1/2 1 
1/2 -1 /2  -1 

9 1/2 -1 -1 /2  
1/2 3/2 1 

0 -1 /2  3/2 
11 1/2 -1 -1 

1/2 1 1/2 
0 -3 1/2 

13a 1 1/2 1/2 
0 - 1  3/2 
0 -3 /2  -1 

136 0 3/2 -1 /2  
-1 /2  0 3/2 

3/2 -1 /2  0 

l - 3 / 2  1 
1/2 2 -1 /2  
1/2 -2 1/2 

0 -1 -2  
1/2 3/2 -1 
1/2 -3 /2  1 

0 -1 -3  
0 0 1 

5/2 -1 /2  0 
1/2 5/2 0 
1/2 3/2 1 
-2  1/2 1 

3/2 -2  l 
15 1/2 3/2 -1 /2  -1 /2  -2  1/2 

-1 -1 /2  -3 /2  
-1 /2  1 1 

17a 1 1/2 1/2 
0 1/2 2 
0 -2  1/2 

17b 1/2 0 -3 /2  
I/2 1/2 2 

0 -5 /2  -1 /2  
19a 1/2 -3  0 

1/2 3 -1 /2  
0 1 3/2 

1 -1  -1  
1/2 0 5/2 

0 0 1 
3/2 -5 /2  0 
5/2 3/2 0 
1/2 2 3/2 
1/2 -2  -3 /2  

0 3 -2  
1/2 -1 /2  -3 
1/2 1/2 3 

0 -3 1 
19b 1 -3 /2  -1 /2  -5 /2  1 1 

1 1 - 3 / 2  3/2 -5/2 1 
1 - I / 2  1 1 3/2 1 

21a 1 1/2 -3 /2  1/2 -3 /2  1 
1 1 1/2 1 1/2 1 
1 - 3 / 2  1 - 3 / 2  1 l 

21b -1 1 -1 /2  1 -1 -1 
1/2 3/2 0 -1 /2  -3 /2  2 
1/2 1/2 -5 /2  -1 /2  -1 /2  - 4  

23 -1 /2  -1 -2  -1 /2  3/2 2 
0 3/2 - I  

3/2 1/2 0 
25a 1 1/2 1/2 

0 3/2 -2  
0 2 3/2 

25b 1 -1 /2  0 
1/2 3/2 -3 /2  
1/2 1 5/2 

27a 1/2 -3 /2  1 
1/2 1 -1 

0 1/2 5 
27b -3 /2  1/2 1/2 

1 1/2 2 
1/2 2 1/2 

29a 1 1/2 1/2 
0 1 5/2 
0 -5 /2  I 

29b 1/2 2 2 
-1 /2  1 -3 /2  

-1 0 3/2 

0 -3 1 
3/2 1/2 0 

0 0 l 
7/2 -1 /2  0 
1/2 7/2 0 

1 2 0 
1/2 -5 /2  3/2 
1/2 -3 /2  -5 /2  
1/2 1 5/2 
1/2 - l  -5 /2  

0 5 -1 
1/2 3/2 -1 /2  

2 -1 1 
112 -1 /2  -7 /2  

0 0 1 
3/2 -7 /2  0 
7/2 3/2 0 

2 -2  -1 /2  
1 4 1/2 
0 -3 1 

31a 1 -3 /2  - I  -1 /2  -5 /2  1 
1 3/2 - 3 / 2  3 - 1 / 2  1 
1 -1  3/2 - 5 / 2  3 1 

31b 1 -3 /2  -1 /2  -1 -2  l 
1/2 2 -3 /2  7/2 1/2 1/2 
1/2 1/2 2 -3 /2  5/2 1/2 

33a 1/2 -2  -3 /2  1/2 4 -1 /2  
1/2 5/2 2 1/2 -4  1/2 

0 -3 /2  5/2 0 -1 -4  

S y m m e t r y  
of  CSL 

hP 

hR 

ol  

oC 

t l  

hR 

t l  

oI 

oC 

hR 

hP 

ol  

mC 

t l  

mC 

oC 

mC 

t l  

mC 

hR 

mC 

oI 

Table 3 (cont.) 

.X [tl ,  t2, t3 ] [71, 72 , 73 ] 

33b l -1 1/2 1 -2 -1 
1/2 -1 -2  1/2 7/2 -1 
1/2 3 -1 /2  1/2 1/2 3 

33c 1/2 0 5/2 1/2 5/2 -2  
1/2 1/2 -2  1/2 -5 /2  2 

0 7/2 3/2 0 -2  -5  
35a 1 1/2 -1 3/2 -1 /2  -1 

1/2 -1 /2  5 0 -1 5 
1/2 -1 -3 -1 /2  -3 /2  -3 

35b 1/2 -2  0 -1 /2  2 -3 /2  
-1 -1 5/2 

-3 /2  0 -1 /2  
37a 1 1/2 1/2 

0 1/2 3 
0 -3  1/2 

37b 1/2 -2  -1 /2  
-3 /2  -1 /2  0 

0 3/2 -5 /2  

1 1 3 
3/2 0 -5/2 

0 0 l 
5/2 -7 /2  0 
7/2 5/2 0 
5/2 -1 /2  -3 /2  
1/2 3/2 -1 /2  

1 0 4 
37c 1 -2  -1 /2  -7 /2  3/2 l 

1 3/2 - 2  2 - 7 / 2  l 
1 - 1 / 2  3/2 3/2 2 1 

39a I -3 /2  -1 /2  -3 /2  -1 /2  1 
1 2 -3 /2  2 -3 /2  1 
1 - 1 / 2  2 - 1 / 2  2 1 

39b 3/2 -1 0 
l 3/2 0 

1/2 1/2 3 
41a 1 1/2 1/2 

0 -2  5/2 
0 -5 /2  -2  

41b 0 -2  1/2 
-3 /2  I/2 3/2 
-1 /2  1/2 -3 

41c 1/2 3 3/2 
1/2 -5 /2  - l  

0 1/2 -7 /2  
43a 1 1/2 -5 /2  

1 1 1/2 

1/2 5/2 0 
5/2 -1 /2  0 

l 0 - 3  
0 0 1 

9/2 -1 /2  0 
1/2 9/2 0 

2 -1 -2  
1 2 1/2 
0 -6  1/2 

1/2 -3 /2  -4  
1/2 3/2 4 

0 -4  3 
3 -7 /2  1 

1/2 3 1 
l -5/2 l -7/2 I/2 l 

43b I/2 -2 0 I/2 I/2 2 
-2  -1 -1 /2  -1 -2  1 

-1 /2  0 -5 /2  9/2 -1 /2  0 
43c 1/2 -3 /2  3 1/2 3 5/2 

1/2 1 -3  1/2 -3 -5/2 
0 3/2 5 0 5 -3 

45a -3/2 -2 I/2 -3/2 5/2 -I/2 
1/2 1/2 5/2 
-1 3/2 0 

45b 1/2 3/2 -2  
3/2 -1 /2  3/2 

1 -1  - 5 / 2  
45c 1/2 2 -3 /2  

3/2 -1 /2  -1 /2  
-1 -3 /2  -2  

47a 2 -1 -3 /2  
1 1/2 1 
0 -5 /2  3/2 

47b 3/2 1/2 0 
1/2 -1/2 5/2 

0 -3 -1 /2  

1/2 -1 /2  -5 /2  
-1 -4  0 

2 2 1 
1 - 4  - 2  
0 5 -2  

1/2 -7 /2  3/2 
3/2 5/2 1/2 
-1 2 2 

1/2 3/2 3/2 
2 -3 -1 

3/2 7/2 -3 /2  
3/2 -1 /2  3/2 
1/2 1/2 -9/2 

0 3 1 
49a 1 -5 /2  3/2 - 5 / 2  4 1 

1 0 -5/2 -3/2 -5/2 1 
1 3/2 0 4 - 3 / 2  1 

49b 1 2 -1 /2  1 -2  2 
I/2 I/2 5/2 1/2 - I / 2  -9 /2  
1/2 -7 /2  0 1/2 7/2 1/2 

49c 0 2 -1 /2  2 3 0 
1/2 l 7/2 1 -6  -1 /2  
3/2 0 -1 0 2 -3 /2  

S y m m e t r y  
of  CSL 

oC 

oC 

mC 

hR 

hP 

mC 

t l  

mC 

ol 

hR 

mC 

oC 

mC 

oF 

mC 

mC 

mC 

hR 

mC 

mC 
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T a b l e  4. Basis matrices of the reduced, [t l ,  t2, t3], and 
the conventional, [~1, ~2, x3], unit cells of CS lattices 

( 2 < 5 0 )  formed by two body-centred cubic lattices 

2 [tt,  t2, t3] 

3 1/2 1 0 
1/2 -1 1 
1/2 0 -1 

5 1 1/2 1/2 
0 3/2 -1/2 
0 1/2 3/2 

7 1/2 3/2 -3/2 
1/2 -1/2 3/2 
1/2 -3/2 -1/2 

9 1 3/2 0 
1 -1/2 1 
0 -1/2 -2 

11 1 - 1 / 2  - 2  
1 1/2 1 
0 -3/2 1 

13a 1 1/2 1/2 
0 -5/2 1/2 
0 -1/2 -5/2 

13b 1/2 -5/2 3/2 
1/2 1/2 -5/2 
1/2 3/2 1/2 

15 1/2 3/2 -3/2 
3/2 -1/2 1/2 
1/2 -1/2 -5/2 

17a 1 1/2 1/2 
0 5/2 3/2 
0 -3/2 5/2 

17b 1 3/2 2 
1 - 1 / 2  -1  
0 3/2 -2 

19a 1 -3/2 0 
1 3/2 -1 
0 1/2 3 

19b 1/2 -1/2 5/2 
1/2 -5/2 -1/2 
1/2 5/2 -5/2 

21a 1/2 1 -3 
1/2 2 1 
1/2 -3 2 

21b 0 2 -1/2 
-2 1 -1/2 
-1 0 5/2 

23 1/2 1/2 3/2 
1/2 -7/2 1/2 
3/2 1/2 -3/2 

25a 1 1/2 1/2 
0 7/2 -1/2 
0 1/2 7/2 

25b -1/2 -3/2 -1 
1/2 -3/2 3 

--3/2 1/2 2 
27a 1 -3 1/2 

1 2 -1/2 
0 1 5/2 

27b 1/2 -2 -3/2 
-3/2 -1 1/2 
-1/2 0 -7/2 

29a 1 1/2 1/2 
0 7/2 3/2 
0 -3/2 7/2 

29b 2 1 -1/2 
1 - 1  3/2 
0 -2 -5/2 

31a 1/2 7/2 -5/2 
1/2 -3/2 7/2 
1/2 -5/2 -3/2 

31b -1/2 2 0 
1/2 1 4 
3/2 1 -1 

333 1 5/2 0 
1 -3/2 1 
0 -1/2 -4 

Symmetry 
[~x, ~2, ~3] of  CSL 

1 0 1/2 hP 
-1 1 1/2 

0 -1 1/2 
0 0 1 t l  
1 - 2  0 
2 1 0 
2 -3 1/2 hR 
1 2 1/2 

-3 1 1/2 
1 2 - !  oF 
1 - 2  1 
0 - 1  - 4  
1 3 -1/2 oC 
1 - 3  1/2 
0 -2 -3/2 
0 0 1 tI 
2 - 3  0 
3 2 0 

-4 1 1/2 hR 
3 -4 1/2 
1 3 1/2 
2 1 1 oF 
1 - 2  - 2  
0 5 -1  
0 0 1 tI 
4 -1  0 
1 4 0 
1 2 3 oF 
1 - 2  - 3  
0 3 - 4  
1 -1 -3/2 oC 
1 1 3/2 
0 -6 1/2 

-3 5 1/2 hR 
-2 -3 1/2 

5 -2 1/2 
1 -3 1/2 hP 
2 1 1/2 

-3 2 1/2 
- 2  - 2  1 oF 

1 - 3  - 2  
1 -1  4 
2 -3 -3/2 mC 
1 6 -1/2 
0 -1 3/2 
0 0 1 tI 
3 - 4  0 
4 3 0 
2 -4 -3/2 mC 
1 5 - 3 / 2  
1 3 1/2 
1 1/2 5 oC 
1 - 1 / 2  - 5  
0 5/2 -2 
2 1/2 -1 mC 
1 - 3 / 2  2 
0 -1/2 -7 
0 0 1 tI 
5 - 2  0 
2 5 0 

- 2  -1  2 mC 
4 1 1 

- 3  2 0 
5 - 6  1 hR 
1 5 1 

- 6  1 1 
2 2 1/2 mC 
1 - 7  - 1 / 2  
1 3 - 3 / 2  
1 4 - 1  oF 
1 - 4  1 
0 -1  - 8  

T a b l e  4 (cont.) 

2 [tl, t2, t3] [I"1, '1"2, *3] 

33b 1/2 2 1 
1/2 1 -4 

-3/2 1 -1 
33c 1 3 -1/2 

1 - 2  3/2 
0 -2 -5/2 

35a 2 1 -1/2 
1 - 1  5/2 
1 -2 -3/2 

35b 3/2 1/2 1/2 
-1/2 3/2 -7/2 
-3/2 3/2 5/2 

37a 1 1/2 1/2 
0 7/2 5/2 
0 -5/2 7/2 

37b 3/2 1/2 -5/2 
-1/2 5/2 -3/2 

1/2 1/2 7/2 
37c 1/2 -1/2 7/2 

1/2 -7/2 -1/2 
1/2 7/2 -7/2 

39a 1/2 -3 -1 
1/2 4 -3 
1/2 -1 4 

39b -1/2 -5/2 5/2 
-5/2 1/2 -1/2 

1/2 -3/2 -3/2 
41a 1 1/2 1/2 

0 -9/2 1/2 
0 -1/2 -9/2 

41b 2 -1/2 -2 
1 - 1 / 2  2 
0 -7/2 -1 

41c 1 -1 -3/2 
1 2 5/2 
0 -4  3/2 

43a 1/2 5/2 3/2 
1/2 -9/2 5/2 
1/2 3/2 -9/2 

43b -3/2 -2 -1/2 
3/2 -1 -3/2 
1/2 0 9/2 

43c 1 -3 3/2 
1 2 -3/2 
0 3 5/2 

45a 1/2 -5/2 7/2 
-3/2 -1/2 1/2 

1/2 -3/2 -7/2 
45b 2 -1 1/2 

1 2 -7/2 
0 2 3/2 

45c 1/2 3/2 -9/2 
-1/2 5/2 3/2 

3/2 -1/2 3/2 
47a 1/2 -2 -5/2 

-3/2 -1 5/2 
-3/2 0 -7/2 

47b 1 0 5/2 
1 -5 1/2 
3 1 -3/2 

49a 1/2 7/2 1/2 
1/2 -9/2 7/2 
1/2 1/2 -9/2 

49b -3/2 -2 1 
-1/2 -1 -5 

3/2 -1 0 
49c 2 0 3/2 

1 1 -5/2 
o 3 5/2 

2 1/2 -4 
1 1/2 7 
1 - 3 / 2  1 
1 5 -2 
1 -5 2 
0 4 -5 
3 -1 -1/2 
0 -2 5/2 

-1 -3 -3/2 
2 -3 -1 
1 6 2 
0 -5 3 
0 0 1 
6 -1 0 
1 6 0 
2 -1/2 3 
2 -5/2 1 
1 - 1 / 2  - 8  

-4 7 1 
-3 -4 1 

7 -3 1 
-3 -1 1/2 

4 -3 1/2 
-1 4 1/2 

0 5 -1/2 
0 -1 -5/2 

-3 0 1/2 
0 0 1 
4 -5 0 
5 4 0 
0 1 2 
3 -2 -2 
1 6 - 1  
1 -3 -4 
1 3 4 
0 -8 3 
7 -1 1/2 

-6 7 1/2 
-1 -6 1/2 

2 -3/2 1 
1 3/2 -2 
0 1/2 9 
1 3/2 5 
1 - 3 / 2  - 5  
0 5/2 -6 
2 5 -5/2 
2 -1 -1/2 
1 -8 -3/2 
2 -2 -1 
1 4 2 
0 -5 2 
2 -3/2 7 
2 -5/2 -5 
1 1/2 - 4  
2 1/2 -3 
1 -3/2 6 
0 -3/2 -7 
3 -3 -5/2 
1 9 -1/2 
0 -2 3/2 
3 5 1/2 

-8 3 1/2 
5 -8 1/2 
2 -3/2 4 
1 -1/2 -9 
1 3/2 1 
3 0 2 

-6 -1 1 
2 -3 0 

Symmetry 
of CSL 

oC 

oF 

oC 

oF 

tI 

mC 

hR 

hP 

mC 

tI 

mC 

oF 

hR 

mC 

oC 

mC 

oI 

mC 

mC 

mC 

hR 

mC 

mC 
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misorientation corresponds to a 60 ° rotation along a 
(111) direction (Warrington & Bufalini, 1971). 

In the second example we consider the dichromatic 
patterns for 2; = 15 [210]/48.19 °. The translational 
symmetry of  these patterns is described by a side- "~ 
centred, body-centred or face-centred orthorhombic 3 5 
lattice depending on whether the white (and black) 7 

9 lattice is p.o., f.c.c, or b.c.c., respectively. The true 1~ 
symmetry of  the patterns must, however, be lower 13a 
since, as mentioned in § 4, the point group of the 13b 
particular CSL misorientation is 2'/m'. This suggests 15 17a 
that the orthogonality of  the axes in the non-primitive 17b 

unit cells of  these patterns must be regarded as 19a 
accidental. In fact, such pseudo-orthorhombic sym- 19b 21a 
metry occurs for ,~ = 15, 21b, 33b, 35a, 35b and 45b. 21b 
A similar situation is encountered for the 2 = 3 9 b  23 

25a CSL dichromatic pattern in which the periodicity is 25b 
described by a side-centred monoclinic lattice and its 27a 
point group is 1. Again, the pseudo-monoclinic  sym- 27b 

29a 
metry of this pattern is due to accidentally special 29b 

values of  the interaxial angles. 31a 
It is clear that, in cases like the ones just mentioned, 31b 33a 

only the metric symmetry of CS lattices fails to reveal 
the true symmetry of the corresponding CSL dichro- 
matic patterns.* For the unambiguous determination 
of  their symmetry it is necessary, as explained in § 3, 
to combine the dichromatic point symmetry with the 
three-dimensional translational symmetry of the 
associated CS lattice. 

7. Space symmetry of CSL dichromatic patterns 

The space groups of the CSL dichromatic patterns 
formed by two p.c., b.c.c, or f.c.c, lattices are given 
in Table 5. As can be seen, the considered dichromatic 
patterns belong to one of the following systems: 
hexagonal, tetragonal, trigonal orthorhombic, mono-  
clinic and triclinic. Furthermore, we note that there 
is only one dichromatic pattern of hexagonal sym- 
metry and it corresponds to Z = 3 [111]/60 ° (or sym- 
metry equivalent) misorientation. Also, only one 
dichromatic pattern (Z = 39b) of triclinic symmetry 
exists for CSL rotations with Z < 50.t The remaining 
CSL misorientations in the cubic system are classified, 
on the grounds of their low-index descriptions, into 
four distinct categories. The first three categories con- 
tain rotations about [100], [110] and [111], respec- 
tively. In the fourth category we have CSL misorienta- 
tions whose low-index descriptions correspond to 
rotations along [210], [211], [221], [310]. 

The patterns obtained by rotations about the [100] 
axis have tetragonal symmetry.  For the p.c. case the 

* The metric symmetry of  CS lattices for p.c., b.c.c, or  f.c.c. 
lattices up to Z = 21 has recently been determined by Andreyeva 
(1983). We must, however, point out that the results for b.c.c, and 
f.c.c, lattices appear in Andreyeva's tables in the wrong order. 

1"Tabulated values of  CSL misorientations (Mykura, 1980) indi- 
cate that there are 17 triclinic dichromatic patterns for ,Y < 100. 

Table 5. Space groups of CSL dichromatic patterns 
( 2 < 5 0 )  formed by two primitive cubic, body-centred 

cubic or face-centred cubic lattices 

33b 
33c 
35a 
35b 
37a 
37b 
37c 
39a 
39b 
41a 
41b 
41c 
43a 
43b 
43c 
45a 
45b 
45c 
47a 
47b 
49a 
49b 
49c 

p.c. b.c.c. Lc.c. 

P6' / m' mm ' P6' / m ' mm ' P6' / m ' mm ' 
P4/ mm'm' I4/mm'm' 14/mm'm' 

R3m' R3m' R3m' 
Cmm'm' Fm'm'm lm'm'm 
Cmm'm' Cmm' m' Cmm' m' 

P~mm'm'  14/mm'm' 14/mm'm' 
R3m' R3m' R3m' 

C2'/m' C2'/m' C2'/m' 
P4/mm'm' 14/mm'm' I4/mm'm' 

Cmm'm' Fm'm'm Im'm'm 
Cmm'm ° Cmm'm' Cmm'm' 

R3m' R3m' R3m' 
P31m' P31m' P31m' 
C2'/m' C2'/m' C2'/m' 
C2'/m' C2'/m' C2'/m' 

P~mm'm'  I4/mm'm' 14/mm'm' 
C2'/m' C2'/m' C2'/m' 

Cmm'm' Cmm'm' C-~m'm' 
C2'/m' C2'/m' C2'/m' 

P4/mm'm' 14/mm'm' 14/mm'm' 
P2'/m' C2'/m' C2'/m' 
R3m' R3m' R3m' 

C2'/m' C2'/m' C2'/m' 
Cmm'm' Fm'm'm lm'm'm 
C2'/m' C2'/m' C2'/m' 

Cmm'm' Fm'm'm lm'm'm 
C2'/m' C2'/m' C2'/m' 
C2'/m' C2'/m' C2'/m' 

P4/mm'm' I4/mm'm' l~mm'm '  
C2'/m' C2'/m' C2'/m' 
R3m' R3m' R3m' 
P31m' P31m' P31m' 

P1 P1 Pi  
P4/mm'm' 14/mm'm' I4/mm'm' 

P2'/m' C2'/m' C2'/m' 
Cmm'm' Fm'm'm lm'm'm 

R3m' R3m' R3m' 
C2'/m' C2'/m' C2'/m' 

Cmm' m' Cmm' m' Cram' m' 
C2'/m' C2'/m' C2'/m' 
P2'/m' C2'/m' C2'/m' 
C2'/m' C2'/m' C2'/m' 
C2'/m' C2'/m' C2'/m' 
C2'/m' C2'/m' C27m' 
R3m' R3m' R3m' 

C2'/m' C2'/m' C2'/m' 
P2'/m'  C2'/m' C2'/m' 

unit cell is primitive, its c axis is along [100] and the 
axial ratio is c/a - 1/2; 1/2. On the other hand, body- 
centred unit cells occur for the dichromatic patterns 
formed by f.c.c, or b.c.c, lattices. The c axis is parallel 
to [100] and the axial ratio is c/a = (2//~) 1/2 for f.c.c. 
or c/a = 1/~, 1/2 for b.c.c, lattices. 

The CSL rotations about [110] are associated with 
dichromatic patterns of  point symmetry mm'm' in 
which the two fold ordinary symmetry axis is parallel 
to [110]. The orthorhombic unit cell has the a axis 
along the twofold ordinary axis and its length is 21/2 
for the p.c. and b.c.c, lattices, but 1/21/2 for the f.c.c. 
lattices. The space group of  the dichromatic patterns 
for p.o. lattices is Cmm'm' with axial ratios a : b : c = 
21/2: 2~1/2: ,~1/2. When the white (and black) lattice 
is f.c.c., then two types of  CSL dichromatic patterns 
are formed. These two types are distinguished by 
noting that all the [1 10] CSL rotations can be alterna- 
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tively described by a 180 ° rotation along a [UlUlWl] 
or [u2v2v2] direction. Then, a body-centred ortho- 
rhombic CS lattice is formed when ul or v2 is even 
(type I) and a base-centred orthorhombic CS lattice 
when Ul and v2 are odd (type II). The axial ratios for 
both types of orthorhombic lattices are a" b ' c  = 
(1/2)1/2:(2/2)1/2: Z 1/2. Two types of orthorhombic 
CSL dichromatic pattern occur again for b.c.c, lattices 
depending on ul or Vz. They are either face-centred 
(type I; when ul or v2 is even) or base-centred (type 
II; u~ and v2 are equal to an odd number) ortho- 
rhombic lattices. The axial ratios are a : b : c = 
21/2 : ~ 1/2 .. (22)  1/2 or a : b : c = 21/2 : (2?)  1/2 ,_ ( 2 / 4 )  1/2 

for F or C lattices, respectively. 
The lattices of CSL dichromatic patterns corre- 

sponding to [111] rotations are hexagonal or rhom- 
bohedral with the principal axis parallel to [111], the 
length of which is 31/2 for the p.c. or f.c.c, lattices but 
31/2/2 for the b.c.c, lattices. For all p.o., f.c.c, and 
b.c.c, cases, the space group of the Z = 3 dichromatic 
pattern is P6 ' /m 'mm' .  All the other [111] rotations 
yield dichromatic patterns of trigonal symmetry. Two 
types of trigonal space groups are formed depending 
on whether or not Z is a multiple of 3. In type I 
belong dichromatic patterns With 2 = 7, 13 b, 19 b, 31 a, 
37c, 43a, 49a and they have a non-primitive unit cell 
(rhombohedral cell) with c /a  = (3 /22)  1/2 for p.o. lat- 
tices, c / a = ( 3 / 8 2 )  1/2 for b.c.c, lattices or c / a =  
( 6 / ~ )  1/2 for f.c.c, lattices. If Z = 3n, where n is an 
integer, the dichromatic patterns (for 2 =21a  and 
,? = 39a) possess a primitive hexagonal unit cell with 
c / a = ( 3 / 2 n )  1/2, (6/n)  1/2, (3/8n) 1/2 when the white 
(and black) lattice is p.o., f.c.c, or b.c.c., respectively. 

It remains, now, to consider the space groups for 
the rest of the CSL rotations. With the exception of 
the 2 = 39b CSL misorientation, all these rotations 
yield dichromatic patterns of monoclinic symmetry. 
In these cases the expression of the axial ratios by 
general relations is not desirable owing to the large 
number of different types of unit cells that have to 
be considered• For instance, in the case of CSL 
dichromatic patterns with pseudo-orthorhombic sym- 
metry we have to consider three types of unit cells• 
Type I corresponds to ~ = 15 [210]/48-19 ° and 2 = 
35b [210]/106.60 ° and the axial ratios of the associ- 
ated unit cells are a • b" c = (2.,~,/d)1/2: ( 2 2 )  1/2: d 1/2, 
(~,/2d) 1/2". dl/2:  (~ /2 )  1/2 or d 1/2" (2?/d)1/2:  (2~ )  1/2, 

where d = 22+ 1 = 5, depending on whether the white 
(and black) lattice is p.c., f.c.c, or b.c.c., respectively. 
Type II refers to Z =45b [210]/83.62 ° dichromatic 

• d 1/2 (~,/d)1/2:~, 1/2, where d = patterns and a b : c = • 
5, for all p.c., f.c.c, and b.c.c, cases. The last type of 
pseudo-orthorhombic dichromatic patterns contains 
the ~ =21b [210]/58.41 ° and ~; =35a  [211]/34.05 ° 
misorientations. In the case of p.o. or f.c.c, lattices 
the axial ratios of the unit cells are a : b : c =  
(4Z/d) l /2 :d l /2:~ ,  1/2 or (Z/d)1/2:(d/4)l/2:. ,S 1/2, 
respectively, where d = 14. 

8. Conclusions 

In the preceding sections a procedure was presented 
enabling the determination of the symmetry of a CSL 
dichromatic pattern knowing the rotation axis and 
rotation angle characterizing it. By using this 
methodology, the symmetry of a dichromatic pattern 
formed by two identical cubic lattices was investi- 
gated by combining the three-dimensional periodicity 
of the associated CS lattice with the point-symmetry 
operations of the motif characterizing the particular 
dichromatic pattern. This provides a very elegant and 
concise formulation for treating this subject, 
especially if antisymmetry (two-coloured symmetry) 
is used as suggested by Pond & Bollmann (1979). 

A dichromatic pattern is considered as a composite 
formed by the appropriate superposition of a black 
and a white lattice. This permits us to apply the 
principle of the symmetry of composites (see e.g. 
Shubnikov & Koptsik, 1977) and to use group-theo- 
retical procedures for determining the point group of 
a dichromatic pattern. The treatment shows that all 
dichromatic patterns in the cubic system are cen- 
trosymmetric and their possible point groups are 
4 /mm'm ' ,  6 ' /m 'mm' ,  3m', mm'm' ,  2 ' /m' ,  1. 

The periodicity of a CS lattice, on the other hand, 
was expressed by means of the reduced (Niggli) unit 
cell. This ensures uniqueness in the description of the 
three-dimensional translational symmetry of the par- 
ticular CS lattice. Also, it permits the determination 
of the corresponding conventional unit cell so that 
the derivation of the space group of the dichromatic 
pattern is carried out in a straightforward manner. 

The determination of all possible space groups for 
CSL dichromatic patterns in the cubic system is valu- 
able for several reasons. Firstly, systematic classifica- 
tion in this way enables the grouping of dichromatic 
patterns into classes and, also, permits any generic 
relations between dichromatic patterns with the same 

but formed by two p.o., b.c.c, or f.c.c, latl~ices to 
be established. Secondly, it becomes possible to relate 
uniquely a coordinate pattern to the symmetry ele- 
ments of a dichromatic pattern, thus ensuring unique- 
ness of description for its associated bicrystals. 

Concluding this paper, we must point out that the 
symmetry of the dichromatic pattern is uniquely 
related to the axes of the 180 ° rotation creating the 
pattern. This is shown in Fig. 1, which represents the 
stereographic projection in the reference triangle of 
the 180 ° rotation axes of all CSL misorientations in 
the cubic system with Z < 50. Each rotation axis is 
marked by a solid square, open circle, solid triangle 
and solid circle depending on whether the corre- 
sponding dichromatic pattern exhibits tetragonal, 
orthorhombic, trigonal or monoclinic symmetry, 
respectively. The 2 = 3  [111]/180 ° and [211]/180 ° 
misorientations, associated with hexagonal sym- 
metry, are shown by crosses. We note that the mis- 
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orientations of dichromatic patterns with point sym- 
metry 4 /mm'm'  are described by 180 ° rotations along 
directions lying on the arc of the circle passing 
through [100] and [110]. Similarly, the orthorhombic 
groups m m ' m '  correspond to directions in the sections 
[100]-[111] and [110]-[111] of the standard stereo- 
graphic triangle and the trigonal groups 3m' to the 
section [110]-[211] 

It is also interesting to mention that the symmetry 
of the dichromatic pattern defines uniquely the 
number N of different misorientations that create a 
given CS lattice. Grimmer (1973) has shown that N 
is a multiple of 24, i.e. N--24M,  where M is 
unambiguously determined by the crystal class of the 
corresponding dichromatic pattern according to the 
following table: 

M crystal class of the dichromatic pattern 
48 triclinic 
24 monoclinic 
12 orthorhombic 
8 trigonal 
6 tetragonal 
4 hexagonal. 

111 

433/  " ~  55-4 

322~17b  443(~ 3c 

2 1 1 / - 4 3 c  ' 0  e25 b lq 
,.JZ 45c | 

/ r ~  _432 6 5 3 / _ _ _  
..~ / \7A.~ • • [2:,'] 

311..,t~1 c 632 19b~'~853 • ~47a .[.562 
~ 1 1  732 •490 49a~  321 45b 27ay 331 

411 /  • 4 7X.752 19aC) 

b ~ l  A 3bx-541 ("t)~ ̂ 615112~7a9 47b90622 I 21b oa~ 1 
.C~ - ' -  721 m 1 15 ~"  -,,,,"'35a ^i l~ ~:, I,Jaa 
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Fig. 1. Stereographic projection in the reference triangle of the 
180 ° rotation axes of CSL misorientations with E<50  in the 
cubic system. Rotation axes are represented by solid squares, 
solid triangles, open circles or solid circles depending on whether 
the corresponding dichromatic patterns exhibit tetragonal, 
trigonal, orthorhombic or monoclinic point symmetry, respec- 
tively. The E = 3 [ 111 ]/180 ° and [211 ]/180 ° CSL misorientations 
giving rise to dichromatic patterns with hexagonal point sym- 
metry are represented by crosses. 

We further note that, if r denotes the order of the 
point group of the dichromatic pattern, then N r  = 

constant. This relation is a consequence of the dissym- 
metrization taking place during the formation of the 
given dichromatic pattern. In general terms, we have 
a reduction in the symmetry of the dichromatic pat- 
tern in comparison with the symmetry of its parts, i.e. 

the white and black lattices. Then, according to the 
principle of symmetry conservation (mathematically 
expressed by the Lagrange theorem), there exist crys- 
tallographically equivalent ways of obtaining a given 
dichromatic pattern and these are interrelated by the 
symmetry operations of the white (or black) lattice 
supressed by the formation of the pattern. 

I thank Mrs S. Tenezaki for her encouragement of 
this work. I am also grateful to the referees of this 
paper for their helpful suggestions and for a very 
careful reviewing of the manuscript. 
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